ott.geometry.regularizers.Quadratic#
- class ott.geometry.regularizers.Quadratic(A=None, b=None, *, is_complement=False, is_orthogonal=False, is_factor=False, solver=None)[source]#
Quadratic operator \(\frac{1}{2} \left<x, Q x\right> + b\).
The matrix \(Q\) is defined as:
\(Q := A\) if not factored and not an orthogonal complement.
\(Q := A^{\perp}\) if not factored and a complement.
\(Q := A^TA\) if factored and not a complement.
\(Q := \left(A^{\perp}\right)^TA^{\perp}\) if factored and a complement.
- Parameters:
A (
Union
[Array
,AbstractLinearOperator
,None
]) – Linear operator \(A\). IfNone
, use identity.b (
Optional
[Array
]) – Offset \(b\). IfNone
, use array of 0s.is_complement (
bool
) – Whether to regularize in the orthogonal complement of \(A\), defined as \(A^{\perp} := I - A^T (AA^T)^{-1} A\).is_orthogonal (
bool
) – Whether \(AA^T = I\).is_factor (
bool
) – Whether to factor the matrix \(Q\) as mentioned above.solver (
Optional
[Callable
[[AbstractLinearOperator
,Array
],Array
]]) – Linear solver. IfNone
, uselineax.linear_solve()
.
Methods
moreau_envelope
(x[, tau])Moreau Envelope.
prox
(v[, tau])Proximal operator.
prox_dual
(v[, tau])Proximal operator of the convex conjugate.
Attributes